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ABSTRACT

Based on a distributed parameter model for vibrations, an approximate finite
dimensional dynamic compensator is designed to suppress vibrations (multiple modes
with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and
clamped boundary conditions. The control is realized via piezoceramic patches bonded
to the plate and is calculated from information available -or several pointwise observed
state variables. Examples from computational studies as well as use in laboratory
experiments are presented to demonstrate the effectiveness of this design.
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1. INTRODUCTION

InI recent years, a great deal of research has been carried out on the development
and derivation of control designs from an infinite dimensional state-space approach;
however we are unaware of any implementation based on such designs being reported in
the literature. We have presented briefly in [1] some preliminary experimental results on
implementation of an output feedback control which was designed based on an infinite
dimensional (or distributed) system. In this paper we attempt to summarize the design
methodology and give further discussion of the implementation.

The feedback control system was implemented on a circular plate with a piezo-
ceramic patch as actuator. This choice of structure was motivated by tile fact that it
is an isolated component from the structural acoustic system described in [7, 8]. The
structure in that system is made up of a hardwalled cylinder with a clamped circular
plate at one end and the control problem consists of using piezoceramic patches on
the plate to reduce the interior structure-born sound pressure levels which result when
the plate is subjected to a strong exterior acoustic field. The partial differential equa-
tion (PDE) system which describes the dynamics of this circular plate is presented in
Section 3 below.

In our control design, three primary concerns are: 1) presence of disturbance in
both input and output of the system; 2) robustness of control; 3) lack of full state
measurement. Those concerns lead to a design problem involving dynamic compen-
sators for distributed parameter systems. A great deal of recent research has been
carried on the individual or combined topics of our concerns here. For example, see
[2, 4, 13, 15, 16, 17, 18, 20, 21], and the references therein. This problem involves difficult
issues and many theoretical and computational questions remain to be resolved. The
purpose of this paper is to demonstrate how finite dimensional control theory together
with approximation theory for certain optimal control problems can be used to success-
fully design and implement feedback controllers for flexible structures. A finite dimen-
sional dynamic compensator design is outlined in Section 2. The approximation scheme
which leads to a finite dimensional control problem will be discussed in Section 4. A nu-
merical example is given in Section 5 along with experimental results to provide prelim-
inary validation regarding the implementation of a PDE-based (distributed parameter
or infinite dimensional system based) method for reducing structural vibrations.

2. CONTROL PROBLEM FORMULATION

We first consider an n-dimensional system
n For

(t) = Ay(t) + Bu(t), y(O) = yo, Or

yob(t) = 01y(t), (1)
ed Q3

z(t) = Hy(t) + Gu(t), iti c

where the state variable y is in ff?", the control u is in M', the measurement Yob is inR ff,
and the controlled output z is in ff?' for some finite positive integers n, m, p, and r. i% C .
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The coefficients A, B, C, H, and G are time invariant matrices. The performance

index (or cost function) is given by

J(u) = lz(t) 2 dt

= ot(YtYt)+ (Rut), u(t)} dt, ('2)

subject to (1). In (2), Q = H'H, R = G'G, where we assume H'G = 0. The control
problem is to find a controller u E L2(0, 00; R") which minimizes the cost function (2).

We are interested in the case when, as in most practical situations, measurement
of the full state is not available (p < n). (We note that when y06(t ) = y(t) the solution
can be obtained by applying the well known linear quadratic regulator (LQR) optimal
control theory.) One possible approach is to build a state estimator or observer to
reconstruct the state from the measured partial state. One can then feed back this
reconstructed state. In this paper, we consider a full order observer for simplicity (it is
adequate for the plate experiments described below). Design of low order observers is
important when the dimension of the control system is large, and we refer to [10, 15]
for details on reduced order observers.

Let the reconstructed state be denoted by y,(t). We consider the standard com-
pensator (of Luenberger type [191) for system (1) given by

r,(t) = A~y(t) + Fy0 b(t),

AC = A-FC-BK, (3)
u(t) = -Kyc(t),

for a properly chosen feedback gain K and observer gain F so that the reconstruction
error Iyc(t) - y(t)l -- 0 as t --+ oo and the closed loop system

y~t)] =[ A -BK ][y(t) 1

is exponentially stable. Intuitively, we would like to choose F such that the observer
poles of A - FC are deep in the left half complex plane to obtain fast convergence of
the reconstruction error. This must be done with care since an observer so constructed
is very sensitive to any observation noise that may exist.

Among several compensator designs, we first consider the so called optimal com-
pensator. Suppose that the matrix Q is nonnegative-definite, R is positive-definite, the
pair (A, B) is stabilizable, (A, C) is detectable, (A, G) is controllable, and (A, H) is
observable. Then there exist unique (minimal) optimal feedback gain K and observer
gain F given by

K = R-'B'1 (4)
F =PC'R-' (5)
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where H and P are unique nonnegative-definite solutions to the following regulator and
observer algebraic Riccati equations

HA + A'H - IIBR - 'B'H' + Q = 0, (6)

PA' + AP - PC'R-'CP + Q = 0, (7)

respectively. Thus the optimal estimator is obtained and given by (3)-(5). In (7), Q is
a nonnegative symmetric matrix and f is a positive symmetric matrix. The matrices
Q, R, Q, and R are determined by some design criteria for the specific control problems.
We point out that this "optimal" observer can be defined without depending on the
(traditional) stochastic formulation. The name "optimal" is derived from the stochastic
interpretation of the above design (see [13, 19] for further discussions). Briefly, the
above described observer

MO(t) = (A - BR-'B'H)yC(t) + PC'i-IC(y(t) - yt)) (8)

is simply the Kalman-Bucy filter if we consider the system (1) disturbed by the uncor-
related stationary Gaussian white noise vi(t) and v2(t):

p(t) = Ay(t) + Bu(t) + v,(t), y(O) = yo,

yob(t) = Cy(t) + v 2 (t), (9)
z(t) = Hy(t) + Gu(t),

where

Ev,(t)} = 0, E{v(t)v'(,r)} = Q5(t - r)

E = 0, E{V2 (t)v'(r) = R6t - r).

Here E{ } is the expected value. The observer (8) is optimal in the sense that the limit
of the mean square reconstructed error

li £{(y(t) - yc(t))'W (y(t) -y,(t))}

(W is a weighting matrix) is minimal with respect to all other observers (e.g., see [19]).
Even though the optimal compensator provides us with the desired performance,

it is well-known that it may lack robustness. To design a robust dynamic compensator,
let us consider the system (1) with input and output disturbance w(t)

(t) = Ay(t) + Bu(t) + Dw(t), y(O) = yo,

yob(t) = Cy(t) + Ew(t), (10)

z(t) = Hy(t) + Gu(t),

where the disturbance vector w(t) is in MRq for some finite positive integer q. The
coefficients D and E are time invariant matrices. Furthermore, we will restrict ourselves
to matrices H, G, D, and E such that H'H = Q > 0, G'G = R > 0, H'G = 0, DD' =
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> 0, EE' = R > 0, DE' = 0. The more general case where the cross product
terms H'G and DE' are not zero can be dealt with in a similar manner with slight
modifications (see [9]).

Our objective is to design a robust controller that provides acceptable performance
with disturbed incomplete state measurements. One such design technique is the so-
called H,/MinMax compensator given in [9]. One formulates H',-control problems
in the time domain and obtains a soft-constrained dynamic game associated with the
disturbance attenuation problem. The control problem is formulated as a form of
optimization of a performance index (or cost function). For this purpose, we introduce
the extended performance index:

J., (1, 11) Z j{(t)- it) w(t.)L2( dt

(0 1j(Q'Y(0,Y(0) + ( Ru(t),u(t)) - 1 2 (w(i) wo(t)} dt (I

subject to (10). The optimization problem is to find a controller u* E = L2(0, OC; I t '")

and disturbance w* E W = L 2 (0, co; fti
q ) such that

J* = inf sup .J.(u,W)= ./(u*,'=).
uEU wEW

One seeks necessary and sufficient conditions on -' so that quantity .]* is finite. The
lower bound of 7' for which J* < cc is the optimal minimax attenuation level and is
denoted by -y*, i.e.

-* = inf{7 .1 < oo}.

The first part of the optimization problem formulates the soft-constrained game and
the second is a disturbance attenuation problem (y is the attenuation level). It can be
shown that the results of this optimization problem yields a bound for the H(o-norm
of the transfer function from disturbance w(t) to the controlled output z(t).

To be more precise, the central results for this control problem can be summarized
as following. Let the pair (A, B) be stabilizable, (A, C) be detectabl, ' e : -.) be control-
lable, and (A, H) be observable. For a given attenuation -y > 0, there exist (minimal)
positive definite solutions H and P to the following two algebraic Riccati equations

H[A + A'I - H(BR-1 B' - Y-2Q)H + Q = 0, (12)

PA'+ AP - P(C'R-C- -2Q)P + Q = 0, (13)

respectively. Moreover, if the spectral radius p of PH satisfies the condition

p(P1)<-y, or H-' 2 P - <0, (14)

then there exists a unique optimal controller

u*(t) = -R-' B'FHy,(t), (15)

and the state estimator y,(t) E ff?" satisfies
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Jt) = Aoyc(t) + Fyob(0, (16)

Yc(O) = Yc0,

where
AC = A-BK-FC+-y-2Q1-1

F = (I-y- 2 PI)-1 PC'k - 1.

In addition, we have -y > -y*.
The resulting closed-loop system

[ y~t) A -BK iFy~t) 1

with the controlled output

0 -GK yC(t

is stable.
Finally, if we let i(s) and ti(s) denote the Laplace transform of z(t) and w(t)

respectively, then the transfer function from the disturbance w(t) to the controlled
output z(t) is expressed by

T(s) = J [sH 0 - A -BK D (19)-bs 0 •G F cF
Furthermore, the H, norm of the transfer function (19) is bounded by

IIT (-.)ll !o -t.

Thus, if we follow this procedure we obtain a dynamic compensator which not only
stabilizes the system with imperfect state measurements, but also provides robustness.

3. STRUCTURAL MODEL

In this section, the mathematical model used to describe the experimental setup
is given. To reduce computational complexity, in our initial experiments the structure
is axisymmetrically configured. We point out that all of the results and techniques
presented here can be extended directly to the more general case of nonaxisymmet-
tic configurations. The structure under study is a fixed-edge circular plate with a
centrally placed circular shaped piezoelectric ceramic patch for actuation and sens-
ing. The equations of motion will be formulated in polar coordinates (r, 0). Under
the Love-Kirchhoff plate theory with Kelvin-Voigt (or strain rate) damping, the trans-
verse vibrations w(t, r, 0) of a plate of radius a subject to an axisymmetric external force
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g(t, r, 0) are described by the system

a 2W Ow 02M, 2 OMr 10Me 0 < r < a('O)- +c,,:-- + Or2 +- =VM,
-2+ 7 r r t > 0 (20)

w(t,a,0) = 0, -(t, a, 0) = 0,
at

where the internal bending moments are

M = ,, _
2w 

__,Ow _____ v(r, 0) a2w
= D r + +rCD(,', 0) ( +

r Or] + ( kU20t 7" OrOt)

Mo= D(r,0) 1V + v(r, 0)2W) + CD("',w0) ( 2w+ Oi :, 3W

(r 97.1912. 0t ra

and the piezoceramic patch generated excitation moment is Mpe = K-BXpeU(t). Here ca is
the viscous (air) damping coefficient, and u(t) is the voltage applied to the patch. With

denoting the Young's modulus, the spatial variables D -E 1_,, v and CD rep-

resent the flexural rigidity, Poisson's ratio, the mass density per area, and Kelvin-Voigt
damping for the plate/patch structure. The constant KCB is a piezoelectric parameter
depending on the material piezoelectric properties as well as geometry, and the char-
acteristic function Xp, is given by Xpe(r) = 1, for r < ape, Xpe(r) = 0, for r > ap, for a

patch of radius ape. The term V2 Mp in (20) is an unbounded operator involving Dirac
delta function derivatives.

Let S2 denote the region occupied by the plate and Qpe that of the patch. The
energy (weak or variational) form of system (20) is

+2wOw j MTl dw +j!Me1 0(21

(21)= lope :Bu(t)V2 dW +ig d

for a class of test functions t (see [81 for details).

4. PLATE VIBRATION CONTROL

For the control examples discussed here, we will concentrate on the situation where
the plate starts with a given initial displacement and velocity and is then allowed to
vibrate. It is also assumed that there are no external forces applied, i.e. g(t, r, 0) = 0.
The goal in the control problem is to determine a voltage u(t) which, when applied to
the piezoceramic patch, leads to a significantly reduced level of vibration. For our dis-
cussions in this note, the control problem formulation (1)-(2) is used and we implement
the optimal observer of (3)-(8). Robustness of the controller was not considered in our
first attempt of implementation of the control design. However, it is the subject of our
current efforts and will be reported on elsewhere.
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The system describing the dynamics of the plate is infinite dimensional. To approx-
imate the plate dynamics, a Fourier-Galerkin scheme is used to discretize tht infinite
dimensional system (21). Following the ideas detailed in [8], the plate displacement is
approximated by

N

, 9) = Nw(t) B,,(r, 9) (22)
n=1

where {B,(r,0)} },1N are cubic spline/Fourier basis functions. The substitution of the
expansion (22) into (21) yields the 2N x 2N matrix system

1iN(t) = ANYN(t)+ BNu(t), (23)

N(o) = yN

where yN(t) = [,(t),.., wN(t), _aN(t),... , 0bN(t)] denotes the 2N x 1 vector contain-
ing the generalized Fourier coefficients for the approximate displacement and velocity
(see [8] for details concerning the discretization of the circular plate equation and for-
mulation of the matrices AN and BN). To simplify the notation, the superscript N
(which is fixed) will be dropped hereafter in this note. The systems in what follows are
understood to be finite dimensional.

It has been shown in [5, 6, 12] that the approximation scheme is well defined in
the sense that solution to the finite dimensional system (23) converges to the solution
to the original infinite dimensioial system (21).

For the finite dimensional approximate system, the problem of determining a con-
trolling voltage can be posed as the problem of finding u(t) which minimizes the cost
function (2) where y(t) is the solution to (23). From the control design results in
Section 2, the optimal controller and observer are easily obtained from (3)-(7).

We report here on a finite dimensional compensator for the approximate system.
A natural question is whether this compensator will stabilize the infinite dimensional
system. For bounded input and bounded output operator systems, we refer to [13, 15]
for detailed discussions on this issue. For the systems with unbounded input and
output operators, additional results and conditions under which well-posedness and
convergence are assured can be found in [4, 16, 171 18, 20] as well as other references.

5. NUMERICAL EXAMPLES

It is known that the PDE-based control design introduced in preceding sections
requires accurate knowledge of system parameters 3, D, V, CD, c. and KB. Even
though material handbooks may provide partial information, the damping coefficients
are always unknown and the piezoelectric material constant is given only up to certain
range of values. Before the feedback control law can be designed and implemented,
significant parameter identification efforts must be carried out. The methodology and
results for theoretical issues for this parameter identification is reported in [3, 8]. Spe-
cific parameter identification results using experimental data which were obtained from
our circular plate were reported in [1]. The same experimental setup was later used in
control law implementation. The dimension of the aluminum plate and piezoceramic
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patch are summarized in Table 1. The table also contains 'handbook" values for the
Young's modulus, Poisson ratio and density of the plate and patch. The estimated
parameters via fitting model response to the experimental data are summarized in Ta-
ble 2. As explained in [12], the parameters , D, CD and v have discontinuities (at the
patch boundary r = ap) which must be estimated.

Plate Properties Patch Properties
Radius a = .2286 (m) rad = .01905 (m)
Thickness h = .00127 (m) T = .0001778 (m)
Young's modulus E = 7.1 x 1010 (N/M 2) Epe = 6.3 x 1010 (N/1 2)

Density p = 2700 (kg/M 3 ) pp, = 7600 (kg/m 3 )

Poisson ratio v = .33 v w = .31

Strain coefficient I d31 = 190 x 10-12 (m/V)

Table 1. Plate and PZT properties.

(kg/M 2) D(N. m) cD (N .-.- , s) V Ca KB
XlO0- 4  (s -Nlnm) (NI V)

beam b+P beam b+P beam b+P beam b+P

Ana. 3.429 13.601 .33 .013369

Est. 3.157 3.123 11.017 11.178 2.158 2.210 .3304 .3271 15.566 .015288

Table 2. Analytical and estimated values of the physical parameters.

Using these estimated values of the physical parameters, simulation studies were
carried out. To closely resemble the experimental setup, we assumed that a single
point observation, velocity at center, is available. The nonnegative 2N x 2N matrix Q
was chosen by taking energy into consideration and weighted as explained in [3], and
the positive matrix R is just a positive constant which penalizes unrealistically large
voltages. The matrices Q, f are chosen to be 2N x 2N and p x p identity matrices,
respectively, where p is the number of observations (p = 1 in our simulation study).

The simulation was carried out in two steps. First, the PDE system with an
external excitation force and without control (u(t) = 0) was solved for the time period
of [0, t11. The excitation force was cut off before time tl. The solutions at tj were then
used as initial conditions (displacement and velocity) in solving the system with control.
A recorded inpact hammer hit was used as the excitation force. The simulation result
is depicted in Figure 1. In this figure, plot (a) is a time history of uncontrolled versus
controlled velocities, and plot (b) is the control voltage fed back to the piezoceramic
patch. The maximum voltage reflected the choice of weights d = I and R, = 10 -

for the design parameters Q and R respectively. It was observed that it is the ratio
Reid which influences the amplitude of the controlling voltage. The sampling time was
set to 1/12000 Hz, and dimension of the approximation was set to N = 16 under the
criteria that solution to (23) does not vary significantly if the dimension was larger
than 16. The time tj for which the control feedback loop was closed was taken to be
0.01 seconds.
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The simulation studies were most encouraging and we subsequently implemented
the control design in the Acoustic Division at NASA Langley Research Center. A num-
ber of practical problems arose during the implementation; a significant one involved
the use of all accelerometer as sensor. To obtain tile structural velocity, an approximate
integrator was used to integrate the acceleration signal. This integrator is defined by
(see [141)

i;(t) + wT(t) + ' 2i/(t) = ii(t), (24)

where v(t) is velocity and a(t) is acceleration. The equation (24) has zero DC gain
and frequency response close to that of exact integration for w > 6Q. Since the first
structural mode was approximately 58 Hz, the design parameter Q was set to 167r rad/s.
Equation (24) was implemented by solving the following equivalent first order equation

6

(t) - o (t) + [J
in which the second variable was introduced.

After obtaining the velocity, the estimated state at time t is evaluated by

0t = (A - BR-B'lI - PCtR-kC) y'(t) + PC'R-' v(t) (25)

where v(t) is the integration of acceleration at the center of the plate. The backward
Euler method was employed to solve both differential equations (24) and (25). We
should point out that the last term in (25) is different from the one in (3) which was
used in simulation. In (3), y(t) (in yob(t) = Cy(t)) is a vector of generalized Fourier
coefficients, while in the implementation, the observation yob(t) is an observed variable
which can be used immediately instead of multiplying by the matrix C. The controlling
voltage u(t) was obtained through

u(t) = Kyc(t) (26)

and then fed back into the system. The matrices (A - BR-1 B'H - PC'- C) and K

in (25) and (26) were calculated offline to reduce computation time in implementation.
As a preliminary investigation into the feasibility of implementing the feedback

control scheme, a series of experiments were conducted in which the plate was excited
with a centered impact hammer strike and the vibrations were recorded both with
and without controlling voltage being applied. In all cases, the same electronic setup
was used with the control cases differing only in that the calculated voltage was fed
back into the system whereas it was simply calculated and stored in the uncontrolled
case. Representative plots of the plate velocity (integrated from the data recorded by
the centered accelerometer) for the uncontrolled and controlled cases are given in Fig-
ure 2. The forces delivered by the hammer impact in the uncontrolled and controlled
case were nearly identical. By comparing the velocity levels in the two cases, it was
noted that a significant reduction was obtained in the controlled case with a controlling
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voltage having a maximum value below 60 volts. Quantitatively, the application of
the controlling voltage leads to a 47% reduction in maximum velocity levels by time
t = 0.5 seconds and a reduction of 73% by t = I second. We are happy to report
that these results are typical of those recorded in a series of experiments and hence
represent the typical reduction in vibration levels that were obtained when the con-
trolling voltage was fed back into the system in the manner described above. While
implementation procedures are not yet optimal, these preliminary tests demonstrated
that vibration levels could be effectively reduced when the PDE-based control scheme
was implemented. Further experiments are currently underway and will be reported
on at this conference.

6. CONCLUDING REMARKS

In this paper, the experimental implementation of a PDE-based feedback control
strategy for a flexible structure has been considered. The structure under considera-
tion was a thin circular plate with a centered piezoceramic patch. When the control
law was experimentally implemented, the control technique led to a significant reduc-
t.ons in the plate vibrations. As we have noted, even more vibration reduction was
observed in corresponding simulation studies. We are currently conducting research
to investigate the gap between the simulation and experimental findings. While the
restl.ts of implementation are not yet ideal, they provide a test as to the feasibility of
implementing a PDE-based method in this manner as well as indicating directioins for
future experimental tests to further improve techniques and methodology.
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